skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Char, Kookheon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. In this report, a new class of functional chalcogenide hybrid inorganic/organic polymers (CHIPs) bearing free aryl amine groups that are amenable to post-polymerization modifications were synthesized. These functional CHIPs were synthesized via the inverse vulcanization of elemental sulfur with 4-vinylaniline without the need for functional group protection of amines. This polymer is the first example of a polysulfide or CHIP material to carry a useful primary amine functional group which can be successfully post functionalized with acid chlorides and isocyanates to improve the mechanical properties. 
    more » « less
  3. Abstract Optical technologies in the long‐wave infrared (LWIR) spectrum (7–14 μm) offer important advantages for high‐resolution thermal imaging in near or complete darkness. The use of polymeric transmissive materials for IR imaging offers numerous cost and processing advantages but suffers from inferior optical properties in the LWIR spectrum. A major challenge in the design of LWIR‐transparent organic materials is that nearly all organic molecules absorb in this spectral window which lies within the so‐called IR‐fingerprint region. We report on a new molecular‐design approach to prepare high refractive index polymers with enhanced LWIR transparency. Computational methods were used to accelerate the design of novel molecules and polymers. Using this approach, we have prepared chalcogenide hybrid inorganic/organic polymers (CHIPs) with enhanced LWIR transparency and thermomechanical properties via inverse vulcanization of elemental sulfur with new organic co‐monomers. 
    more » « less